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Lecture 18

Dynamic Current Source Matching

Charge Redistribution DACs



Current Steering DAC
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k-slice sub-radix array

Array 

Termination

Slice 1 Slice 2 Slice k

θ R θ R z R

Sub-radix Array 

Typically    2.1< θ < 2.5 

Termination resistor must be selected so that same attenuation is maintained

Often only the first n1 MSB “slices”   will be sub-radix

Effective number of bits when using sub-radix array will be less than k

Can be calibrated to obtain very low DNL (and maybe INL) with small area
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Current Steering DAC
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Current Steering DAC
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Current Steering DAC with Supply 

Independent Biasing
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Provides Differential Output Currents

Thermometer coded structure (requires binary to thermometer decoder)
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Current Current Steering DAC with 

Supply Independent Biasing
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Current  Steering DAC with current output, 

buffered output, resistor load
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Matching is Critical in all DACs Considered
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Obtaining adequate matching remains one of the major challenges facing the designer!
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Dynamic Current Source Matching

• Correct charge is stored on C to make all currents equal to IREF

• Does not require matching of transistors or capacitors

• Requires refreshing to keep charge on C

• Form of self-calibration

• Calibrates current sources one at a time

• Current source unavailable for use while calibrating

• Can be directly used in DACs (thermometer or binary coded)

• Still use steering rather than switching in DAC
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Often termed “Current Copier” or “Current Replication” circuit



Dynamic Current Source Matching

Extra current source can be added to facilitate background calibration
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Charge Redistribution Principle

Charge on capacitors is preserved if there is no loss element on any of the capacitors
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Thus for any time-dependent voltages V1,…Vk
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Charge Redistribution Principle

All capacitors will have some gradual leakage thus causing QT to change

1

1

k

i i X

i
X k

i

i

CV Q

V

C

=

=

−

=




How long will charge on a simple M-SiO2-M capacitor be retained in a standard 

semiconductor process? 
Decades !

SiO2 Metal



DAC Architectures
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DAC Architectures
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(mitigates VOS, 1/f noise and finite gain errors)
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output voltage is sampled on CX
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so voltage on selected sampling 
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Consider basic charge redistribution circuit
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Basic charge redistribution circuit
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Another charge redistribution circuit
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Another charge redistribution circuit
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Another charge redistribution circuit
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Another charge redistribution circuit
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Charge Redistribution DAC
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Another Redistribution DAC
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Noise in DACs
Resistors and transistors contribute device noise but 

what about charge redistribution DACs ?



Noise in DACs
Resistors and transistors contribute device noise but 

what about charge redistribution DACs ?

RVn(t)

Noise in resistors:

Noise spectral density of Vn(t) at all frequencies 4kTRS =

k:  Boltzmann’s Constant

T:  Temperature in Kelvin

This is white noise ! 

k=1.38064852 × 10-23 m2 kg s-2 K-1

At 300K,  kT=4.14 x10-21



Noise in DACs
Resistors and transistors contribute device noise but 

what about charge redistribution DACs ?

Noise in linear circuits:
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VIN C
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Example:  First-Order RC Network
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Example:  First-Order RC Network
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From a standard change of variable with a trig identity, it follows that 

• The continuous-time noise voltage has an RMS value that is independent of R

• Noise contributed by the resistor is dependent only upon the capacitor value C

• This is often referred to at kT/C noise and it can be decreased at a given T  

only by increasing C
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Example:  Switched Capacitor Sampler 

Vn(mT) is a discrete-time sequence obtained by sampling continuous-time 

noise waveform

T is the period of the sampler
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Theorem If V(t) is a continuous-time zero-mean noise source 

and <V(kT)> is a sampled version of V(t) sampled at times T, 2T, ….   

then the RMS value of the continuous-time waveform is the same as 

that of the sampled version of the waveform.  This can be expressed 

as
RMS RMS

ˆ=V V

Theorem If V(t) is a continuous-time zero-mean noise signal and 

<V(kT)> is a sampled version  of V(t) sampled at times T, 2T, ….   then the 

standard deviation  of the random variable  V(kT), denoted as  

satisfies the expression
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Example:  Switched Capacitor Sampler 
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k: Boltzmann’s constant

T: temperature in Kelvin
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