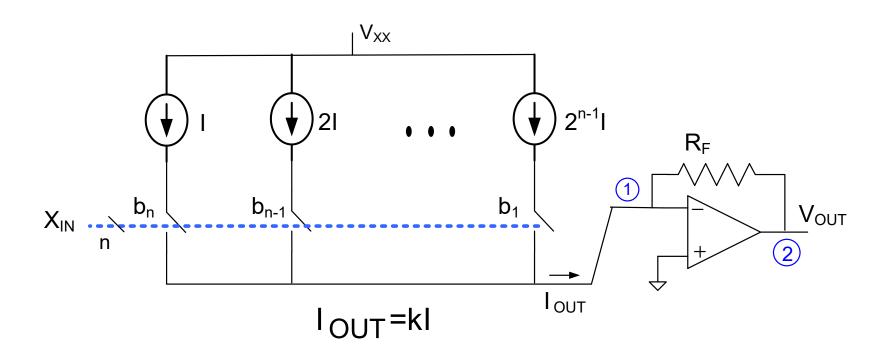
EE 505

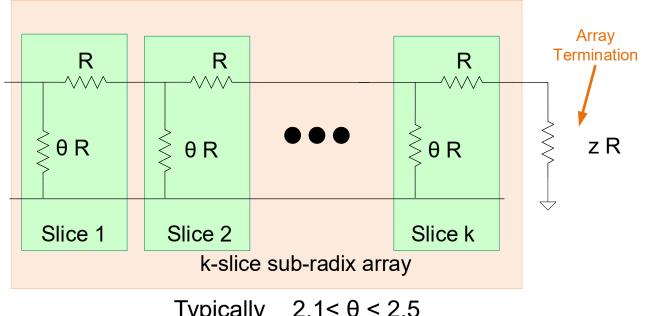
Lecture 18

Dynamic Current Source Matching Charge Redistribution DACs

Current Steering DAC



Sub-radix Array



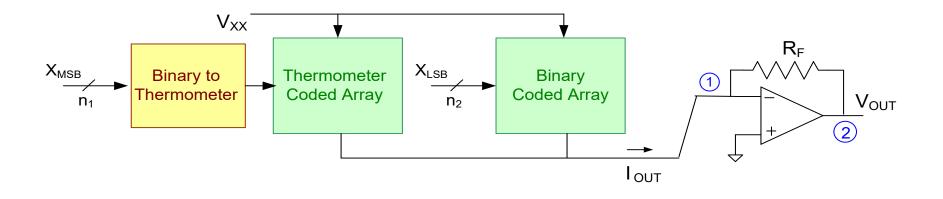
Typically 2.1< θ < 2.5

Termination resistor must be selected so that same attenuation is maintained Often only the first n₁ MSB "slices" will be sub-radix

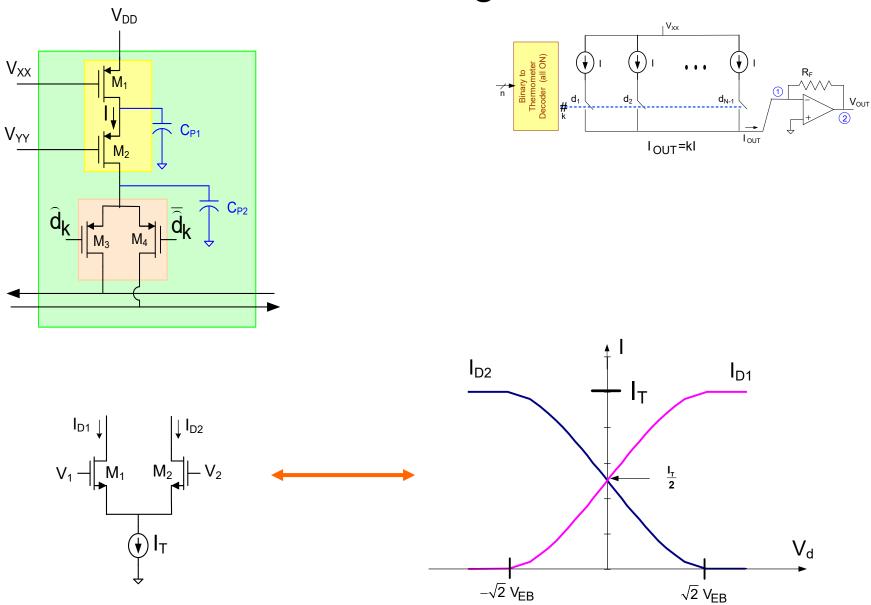
Effective number of bits when using sub-radix array will be less than k

Can be calibrated to obtain very low DNL (and maybe INL) with small area

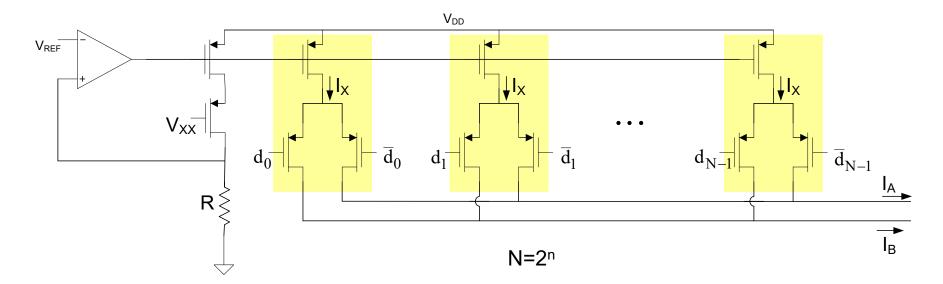
Current Steering DAC



Current Steering DAC



Current Steering DAC with Supply Independent Biasing



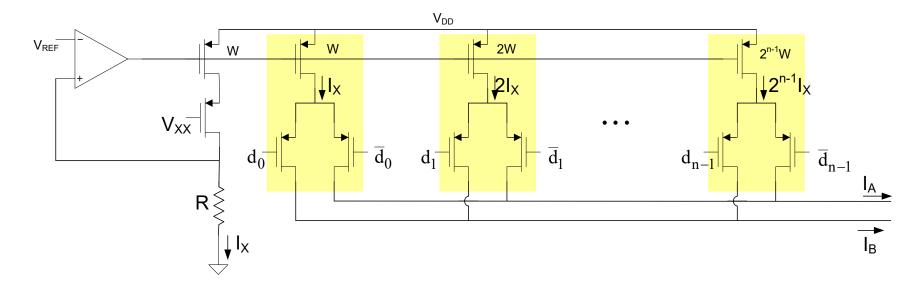
If transistors on top row are all matched, $I_X = V_{REF}/R$

Thermometer coded structure (requires binary to thermometer decoder)

$$I_{A} = \left(\frac{V_{REF}}{R}\right)_{i=0}^{N-1} d_{i}$$

Provides Differential Output Currents

Current Current Steering DAC with Supply Independent Biasing

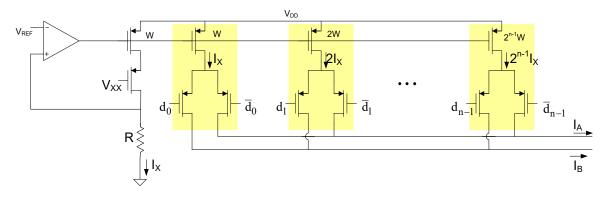


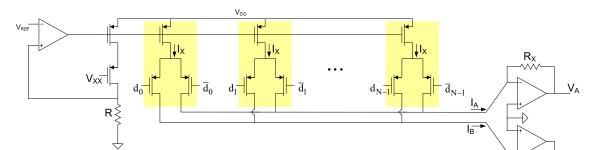
If transistors on top row are binary weighted

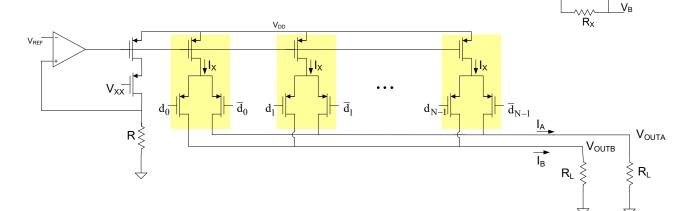
$$I_{A} = \left(\frac{V_{REF}}{R}\right)_{i=0}^{n-1} \frac{d_{i}}{2^{n-i}}$$

Provides Differential Output Currents

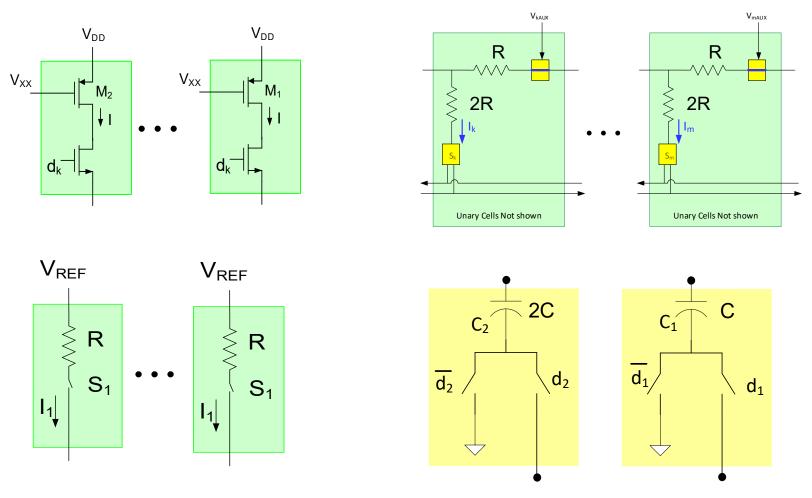
Current Steering DAC with current output, buffered output, resistor load





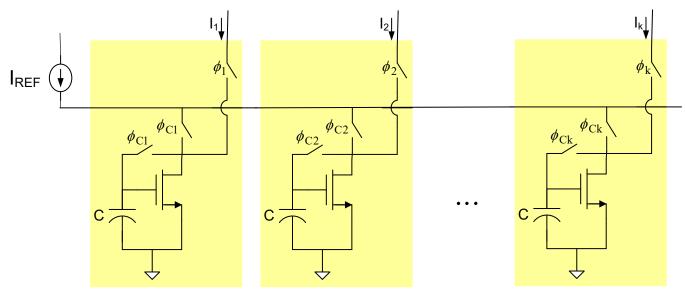


Matching is Critical in all DACs Considered



Obtaining adequate matching remains one of the major challenges facing the designer!

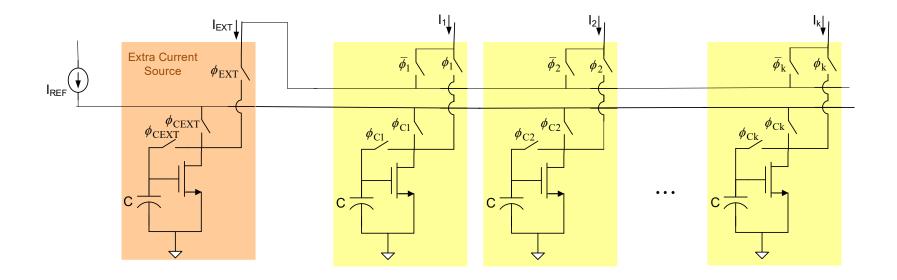
Dynamic Current Source Matching



- Correct charge is stored on C to make all currents equal to I_{REF}
- Does not require matching of transistors or capacitors
- Requires refreshing to keep charge on C
- Form of self-calibration
- Calibrates current sources one at a time
- Current source unavailable for use while calibrating
- Can be directly used in DACs (thermometer or binary coded)
- Still use steering rather than switching in DAC

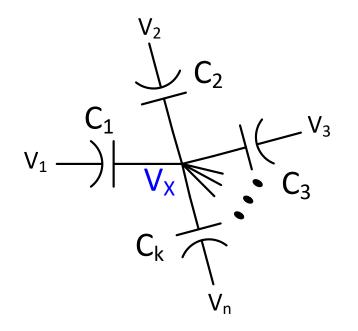
Often termed "Current Copier" or "Current Replication" circuit

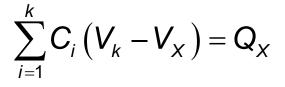
Dynamic Current Source Matching



Extra current source can be added to facilitate background calibration

Charge Redistribution Principle





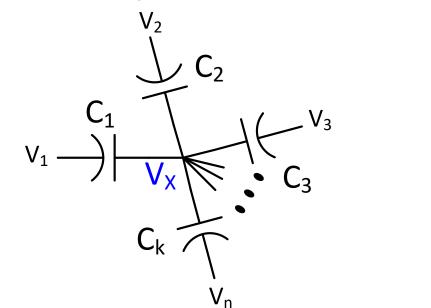
Charge on capacitors is preserved if there is no loss element on any of the capacitors

$$\sum_{i=1}^{k} C_i V_i - V_X \sum_{i=1}^{k} C_i = Q_X$$

Thus for any time-dependent voltages $V_1, \dots V_k$

$$V_X = \frac{\sum_{i=1}^{k} C_i V_i - Q_X}{\sum_{i=1}^{k} C_i}$$

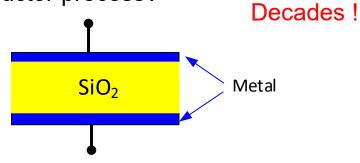
Charge Redistribution Principle



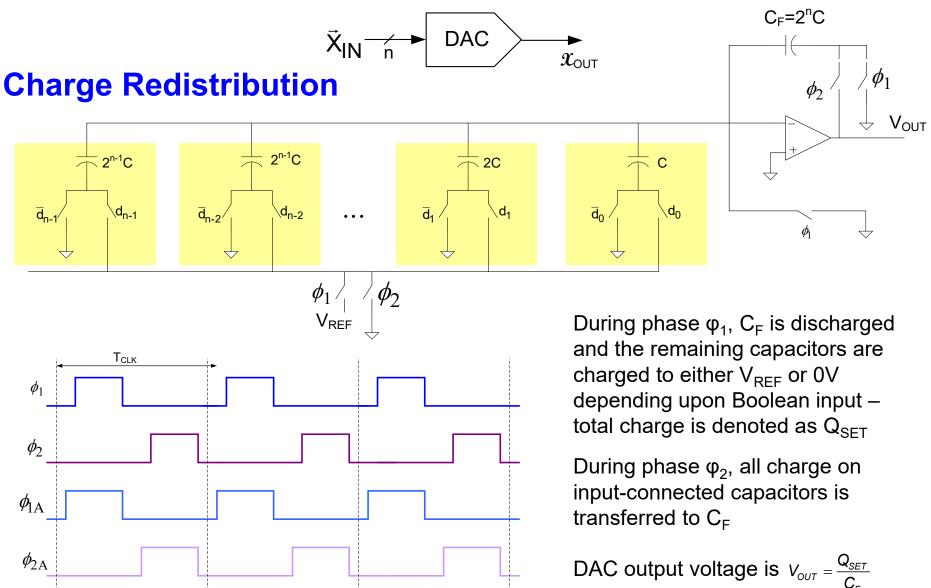
 $V_{X} = \frac{\sum_{i=1}^{k} C_{i} V_{i} - Q_{X}}{\sum_{i=1}^{k} C_{i}}$

All capacitors will have some gradual leakage thus causing Q_T to change

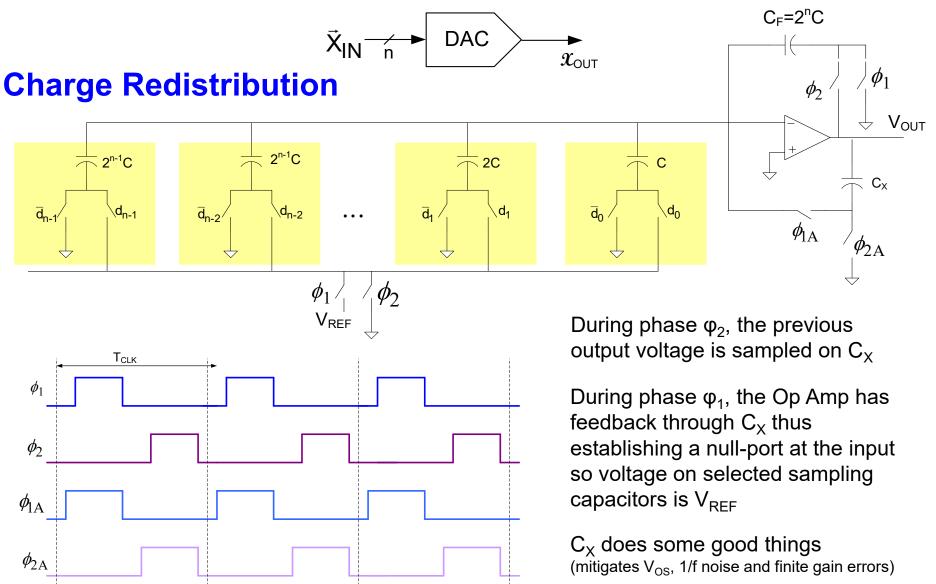
How long will charge on a simple M-SiO₂-M capacitor be retained in a standard semiconductor process?



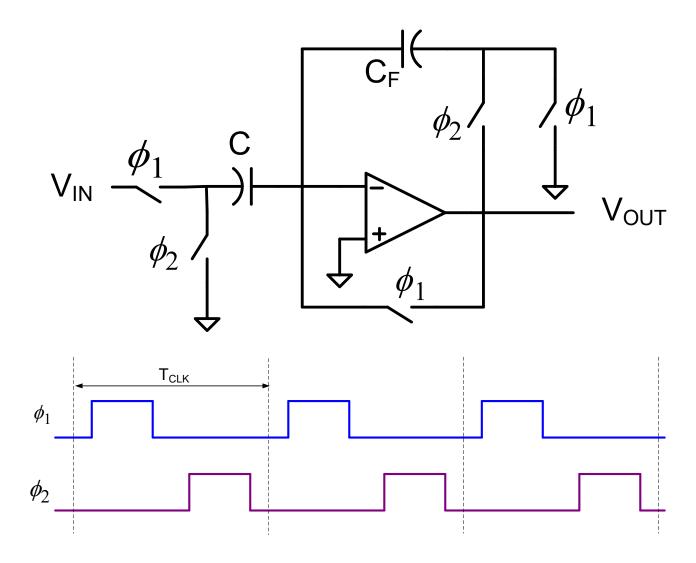
DAC Architectures



DAC Architectures

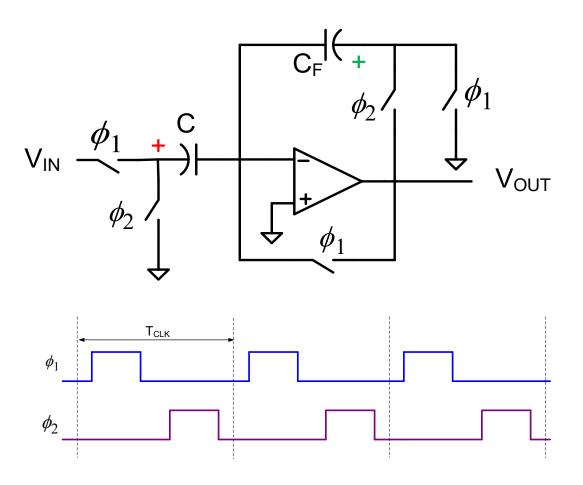


Consider basic charge redistribution circuit



Clocks are complimentary non-overlapping

Basic charge redistribution circuit



During phase ϕ_1

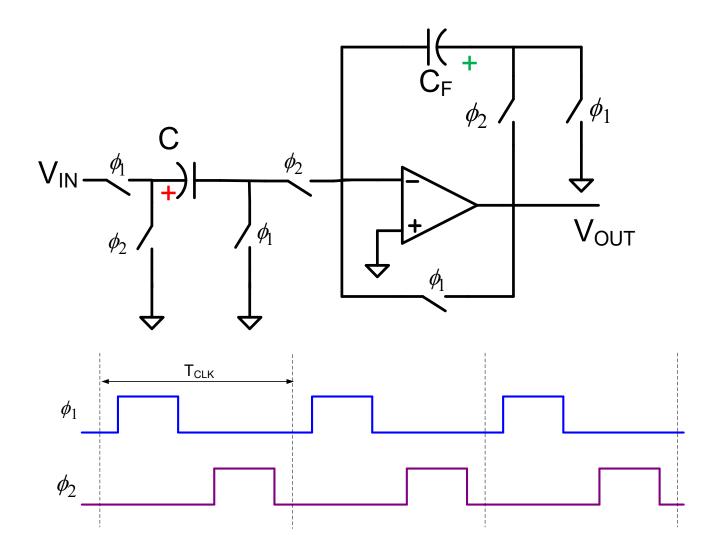
$$Q_{\phi 1} = CV_{IN}$$

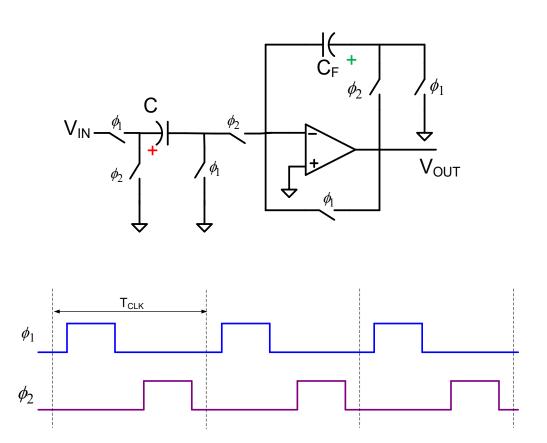
$$Q_{\rm CF} = 0$$

During phase ϕ_2

$$\frac{Q_{\phi 1}}{C_{F}} = V_{OUT}$$
$$\frac{CV_{IN}}{C_{F}} = V_{OUT}$$
$$\frac{V_{OUT}}{V_{IN}} = \frac{C}{C_{F}}$$

Serves as a noninverting amplifier Gain can be very accurate Output valid only during Φ_2



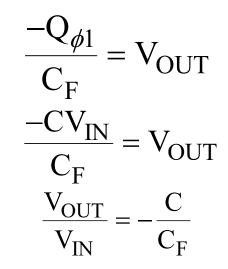


During phase ϕ_1

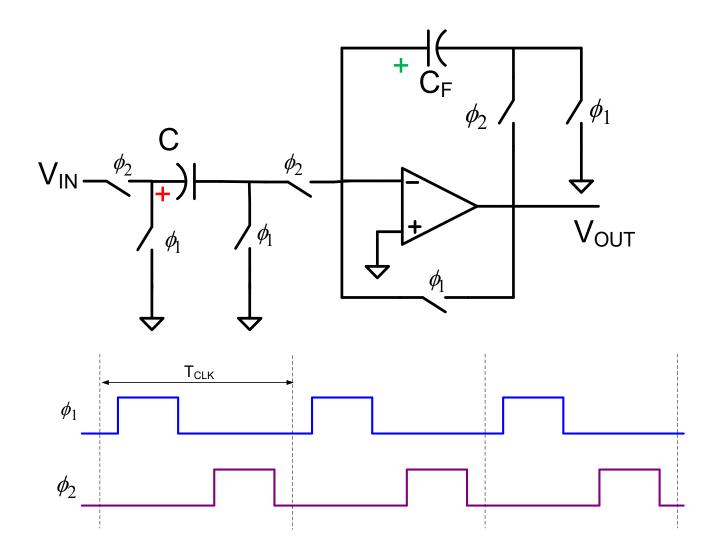
$$Q_{\phi 1} = CV_{IN}$$

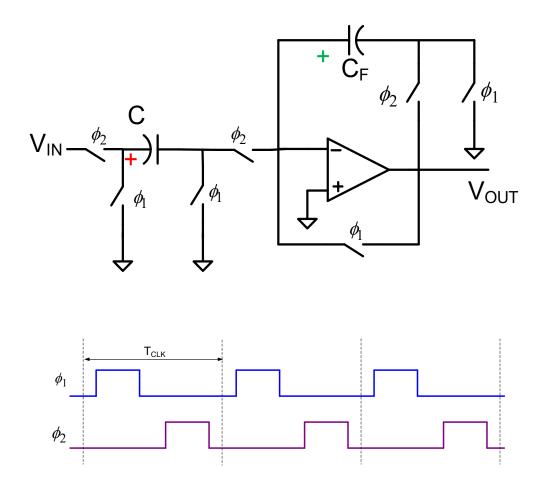
 $Q_{\rm CF} = 0$

During phase ϕ_2



Serves as a noninverting amplifier Gain can be very accurate Output valid only during Φ_2





During phase ϕ_1

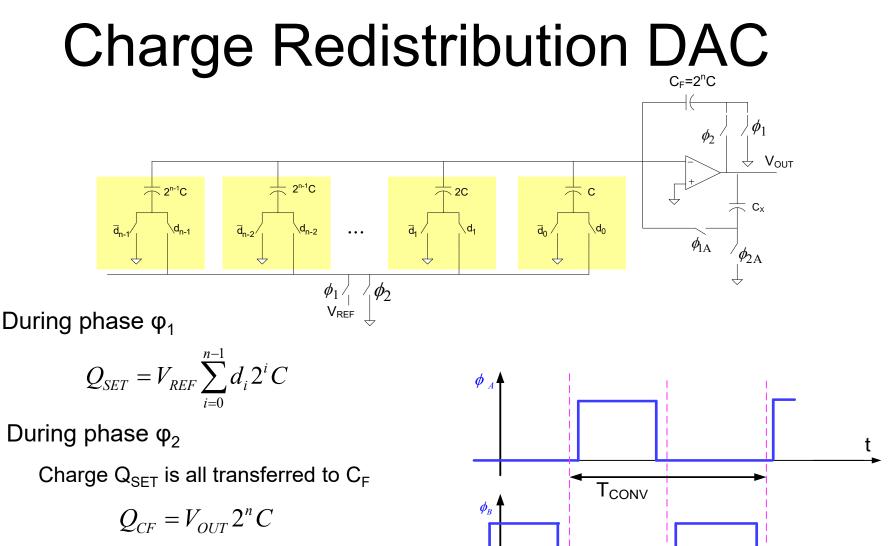
$$\mathbf{Q}_{\phi 1}=\mathbf{0}$$

$$Q_{\rm CF} = 0$$

During phase ϕ_2

 $Q_{\phi 2} = CV_{IN}$ $Q_{CF} = C_F V_{OUT}$ $Q_{CF} = -Q_{\phi 2}$ $\frac{V_{OUT}}{V_{IN}} = -\frac{C}{C_F}$

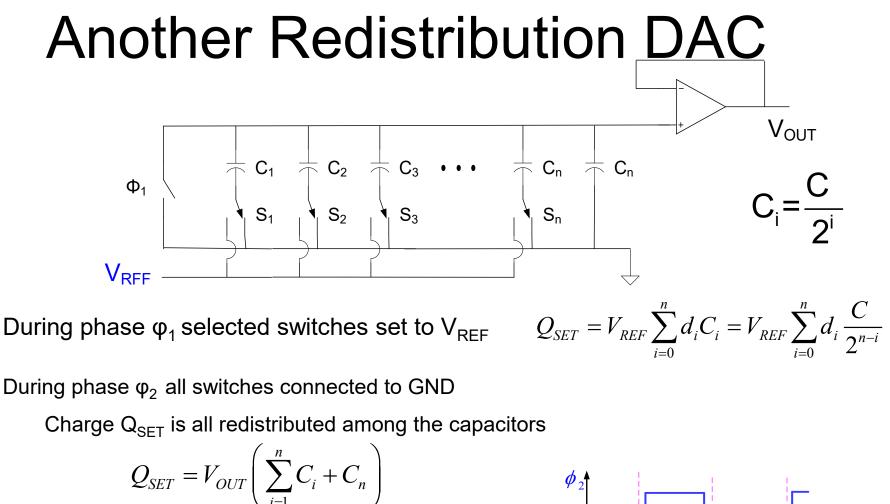
Serves as a inverting amplifier Gain can be very accurate Output valid only during Φ_2



but

$$Q_{SET} = Q_{CF}$$

 $V_{REF} \sum_{i=0}^{n-1} d_i 2^i C = V_{OUT} 2^n C \implies V_{OUT} = V_{REF} \sum_{i=0}^{n-1} \frac{d_i}{2^{n-i}}$



but

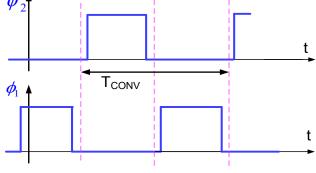
$$\sum_{i=1}^{n} C_i + C_n = \left(\sum_{i=1}^{n} \frac{1}{2^i} + C_n\right) = C$$

$$Q_{SET} = V_{OUT}C$$

$$V_{REF} \sum_{i=0}^{n-1} d_i \frac{C}{2^{n-i}} = V_{OUT}C$$

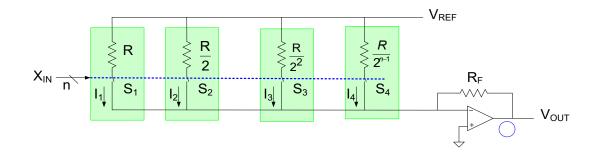
$$V_{OUT} = V_{REF} \sum_{i=0}^{n-1} \frac{d_i}{2^{n-i}}$$

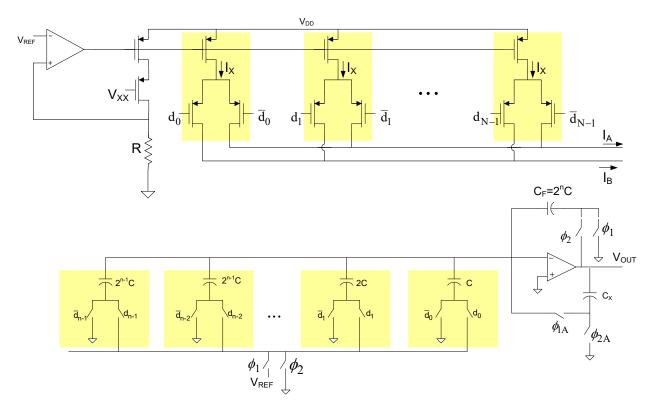
 $\sum_{n=1}^{n} C + C = \left(\sum_{n=1}^{n} C + C\right) = C$



Noise in DACs

Resistors and transistors contribute device noise but what about charge redistribution DACs ?





Noise in DACs

Resistors and transistors contribute device noise but what about charge redistribution DACs ?

Noise in resistors:

$$v_n(t) R$$

Noise spectral density of $v_n(t)$ at all frequencies S = 4kTR

This is white noise !

- k: Boltzmann's Constant
- T: Temperature in Kelvin

k=1.38064852 × 10⁻²³ m² kg s⁻² K⁻¹

At 300K, kT=4.14 x10⁻²¹

Noise in DACs

Resistors and transistors contribute device noise but what about charge redistribution DACs ?

Noise in linear circuits:

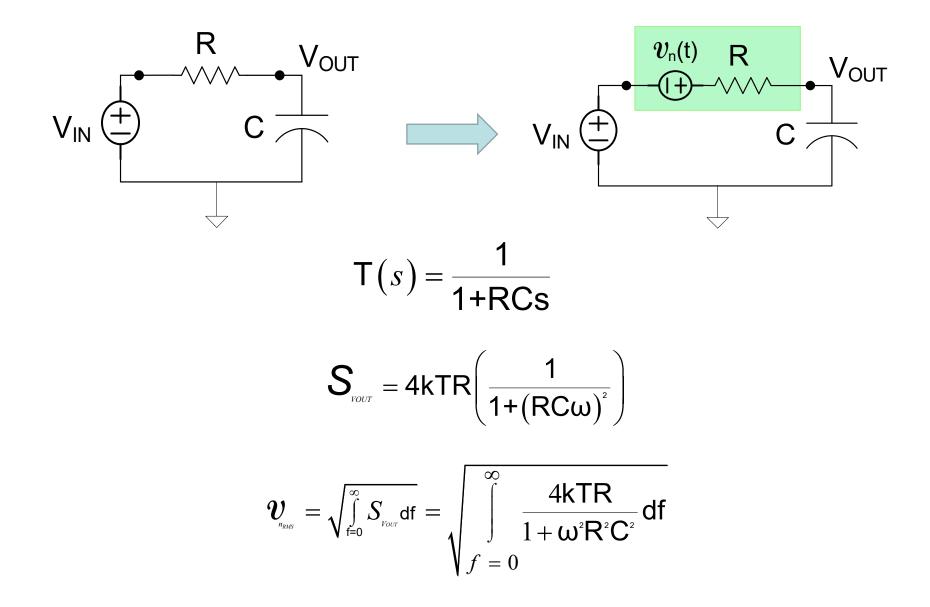
$$v_{n}(t)$$
 $+$ T(s) v_{OUT} -

Due to any noise voltage source:

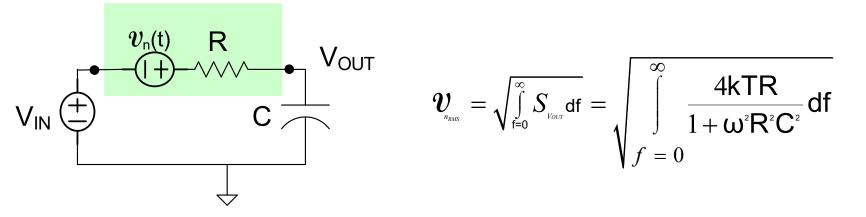
$$S_{V_{OUT}} = S_{V_n} \left| T(j\omega) \right|^2$$

$$\mathcal{V}_{OUT_{RMS}} = \sqrt{\int_{f=0}^{\infty} S_{VOUT}} df = \sqrt{\int_{f=0}^{\infty} S_{V_n} \left| T(j\omega) \right|^2} df$$

Example: First-Order RC Network



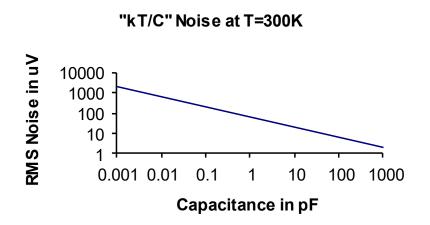
Example: First-Order RC Network



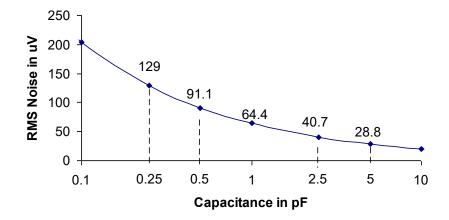
From a standard change of variable with a trig identity, it follows that

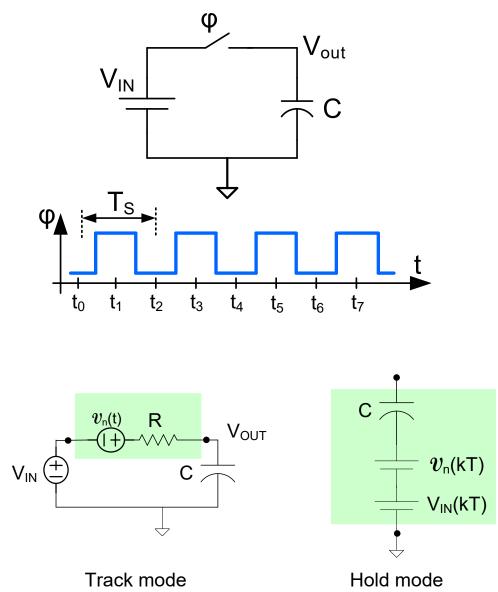
$$\mathcal{V}_{n_{RMS}} = \sqrt{\int_{f=0}^{\infty} S_{v_{OUT}} df} = \sqrt{\frac{kT}{C}}$$

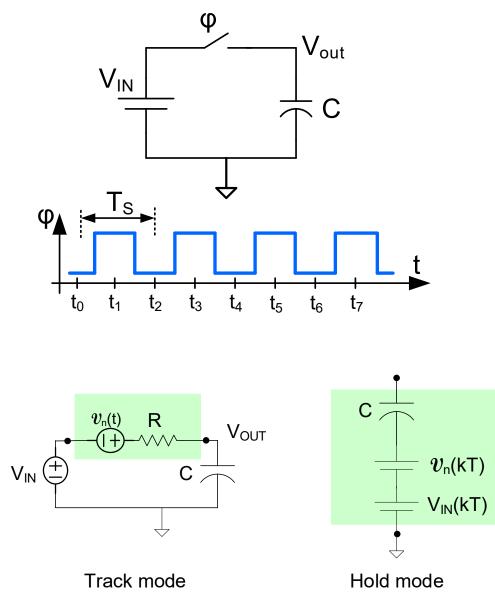
- The continuous-time noise voltage has an RMS value that is independent of R
- Noise contributed by the resistor is dependent only upon the capacitor value C
- This is often referred to at kT/C noise and it can be decreased at a given T only by increasing C

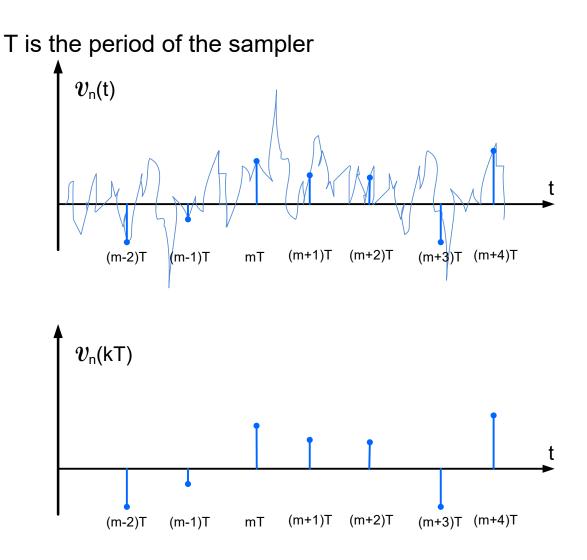


"kT/C" Noise at T=300K



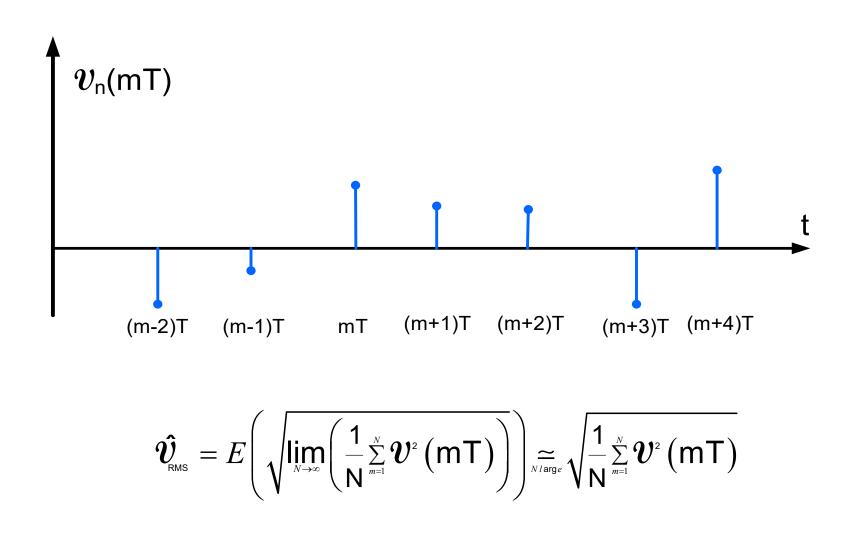






 $\boldsymbol{\vartheta}_{n}(mT)$ is a discrete-time sequence obtained by sampling continuous-time noise waveform

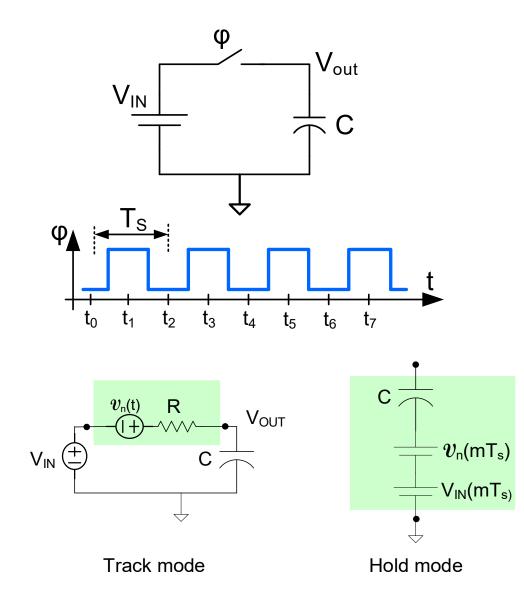
Characterization of a noise sequence



Theorem If v(t) is a continuous-time zero-mean noise source and $\langle v(kT) \rangle$ is a sampled version of v(t) sampled at times T, 2T, then the RMS value of the continuous-time waveform is the same as that of the sampled version of the waveform. This can be expressed as $v_{\rm RMS} = \hat{v}_{\rm RMS}$

Theorem If v(t) is a continuous-time zero-mean noise signal and $\langle v(kT) \rangle$ is a sampled version of v(t) sampled at times T, 2T, then the standard deviation of the random variable v(kT), denoted as σ_{v}

satisfies the expression
$$\sigma_{\rm v}$$
 = $\vartheta_{\rm RMS}$ = $\vartheta_{\rm RMS}$



$$v_{n_{RMS}} = \sqrt{\frac{kT}{C}}$$

k: Boltzmann's constant T: temperature in Kelvin

End of Lecture 18