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Lecture 18

Dynamic Current Source Matching
Charge Redistribution DACs



Current Steering DAC




Sub-radix Array

k-slice sub-radix array
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Termination resistor must be selected so that same attenuation is maintained

Often only the first n, MSB “slices” will be sub-radix

Effective number of bits when using sub-radix array will be less than k

Can be calibrated to obtain very low DNL (and maybe INL) with small area



Current Steering DAC
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Current Steering DAC

Decoder (all ON)
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Current Steering DAC with Supply

Independent Biasing
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If transistors on top row are all matched, |,=Vgee/R

Thermometer coded structure (requires binary to thermometer decoder)
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Provides Differential Output Currents




Current Current Steering DAC with
Supply Independent Biasing
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Provides Differential Output Currents




Current Steering DAC with current output,
buffered output, resistor load




Matching is Critical in all DACs Considered

VDD VDD

N vl

Unary Cells Not shown Unary Cells Not shown

Obtaining adequate matching remains one of the major challenges facing the designer!



Dynamic Current Source Matching

IREF é)

 Correct charge is stored on C to make all currents equal to Igzge
* Does not require matching of transistors or capacitors

» Requires refreshing to keep charge on C

» Form of self-calibration

 Calibrates current sources one at a time

« Current source unavailable for use while calibrating

» Can be directly used in DACs (thermometer or binary coded)

« Still use steering rather than switching in DAC

Often termed “Current Copier” or “Current Replication” circuit



Dynamic Current Source Matching
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Extra current source can be added to facilitate background calibration



Charge Redistribution Principle
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Charge on capacitors is preserved if there is no loss element on any of the capacitors
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Charge Redistribution Principle
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All capacitors will have some gradual leakage thus causing Q; to change

How long will charge on a simple M-SiO,-M capacitor be retained in a standard
semiconductor process?
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Decades !



DAC Architectures
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DAC Architectures
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Consider basic charge redistribution circuit
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Clocks are complimentary non-overlapping



Basic charge redistribution circuit
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Serves as a noninverting amplifier
Gain can be very accurate
Output valid only during @,



Another charge redistribution circuit
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Another charge redistribution circuit

During phase o,
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Serves as a noninverting amplifier
Gain can be very accurate
Output valid only during @,



Another charge redistribution circuit
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Another charge redistribution circuit
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Serves as a inverting amplifier
Gain can be very accurate
Output valid only during @,



Charge Redistribution DAC
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Another Redistribution DA&
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During phase ¢, all switches connected to GND

Charge Qg is all redistributed among the capacitors
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Noise in DACs

Resistors and transistors contribute device noise but
what about charge redistribution DACs ?
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Noise in DACs

Resistors and transistors contribute device noise but
what about charge redistribution DACs ?

Noise in resistors:

Unt) R
—( D"V \\—e

Noise spectral density of V,(t) at all frequencies S —4kTR
This is white noise !

k: Boltzmann’s Constant
T. Temperature in Kelvin

k=1.38064852 x 102 m? kg s K™
At 300K, kT=4.14 x10-2



Noise in DACs

Resistors and transistors contribute device noise but
what about charge redistribution DACs ?

Noise in linear circuits:
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Due to any noise voltage source:
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Example: First-Order RC Network
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Example: First-Order RC Network
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From a standard change of variable with a trig identity, it follows that

V = ,/TSV,df = ,/kT
Mrnis o our C

« The continuous-time noise voltage has an RMS value that is independent of R
* Noise contributed by the resistor is dependent only upon the capacitor value C

« This is often referred to at kT/C noise and it can be decreased at a given T
only by increasing C



RMS Noise inuV
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"kT/C" Noise at T=300K
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Example:

Switched Capacitor Sampler
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Example:

Switched Capacitor Sampler

C . ~

—— Un(kT)

—— Vin(KT)

T

Hold mode

Track mode



Example: Switched Capacitor Sampler

T is the period of the sampler
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V.(mT) is a discrete-time sequence obtained by sampling continuous-time
noise waveform



Characterization of a noise sequence
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Theorem If V(t) is a continuous-time zero-mean noise source
and <V(kT)> is a sampled version of V(t) sampled at times T, 2T, ....
then the RMS value of the continuous-time waveform is the same as
that of the sampled version of the waveform. This can be expressed

as UV =9

RMS RMS

Theorem If V(t) is a continuous-time zero-mean noise signal and
<V(kT)> is a sampled version of V(t) sampled at times T, 2T, .... then the
standard deviation of the random variable V(kT), denoted as UV

satisfies the expression 5 = (] =
v RMS RMS



Example: Switched Capacitor Sampler
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k: Boltzmann’s constant
Track mode Hold mode

T: temperature in Kelvin






